Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(11): e1009755, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748534

RESUMO

Gene editing in C. elegans using plasmid-based CRISPR reagents requires microinjection of many animals to produce a single edit. Germline silencing of plasmid-borne Cas9 is a major cause of inefficient editing. Here, we present a set of C. elegans strains that constitutively express Cas9 in the germline from an integrated transgene. These strains markedly improve the success rate for plasmid-based CRISPR edits. For simple, short homology arm GFP insertions, 50-100% of injected animals typically produce edited progeny, depending on the target locus. Template-guided editing from an extrachromosomal array is maintained over multiple generations. We have built strains with the Cas9 transgene on multiple chromosomes. Additionally, each Cas9 locus also contains a heatshock-driven Cre recombinase for selectable marker removal and a bright fluorescence marker for easy outcrossing. These integrated Cas9 strains greatly reduce the workload for producing individual genome edits.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Edição de Genes/métodos , Genoma Helmíntico , Animais
2.
Elife ; 62017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925353

RESUMO

Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here, we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.


Assuntos
Membranas Intracelulares/fisiologia , Fusão de Membrana , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Genetics ; 202(4): 1277-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26837755

RESUMO

In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications.


Assuntos
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Marcação de Genes , Engenharia Genética/métodos , Animais , Clonagem Molecular , Marcadores Genéticos , Vetores Genéticos/genética , Recombinação Homóloga , Especificidade de Órgãos/genética , RNA Guia de Cinetoplastídeos/genética
4.
Proc Natl Acad Sci U S A ; 112(18): E2290-7, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902545

RESUMO

Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas SNARE/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/química , Bicamadas Lipídicas/química , Lipídeos/química , Lipossomos/química , Fusão de Membrana , Mutação , Ligação Proteica , Proteolipídeos/química , Saccharomyces cerevisiae/metabolismo
5.
J Cell Biol ; 185(3): 535-49, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19414611

RESUMO

Soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptors (SNAREs) are hypothesized to trigger membrane fusion by complexing in trans through their membrane-distal N termini and zippering toward their membrane-embedded C termini, which in turn drives the two membranes together. In this study, we use a set of truncated SNAREs to trap kinetically stable, partially zipped trans-SNARE complexes on intact organelles in the absence of hemifusion and content mixing. We show that the C-terminal zippering of SNARE cytoplasmic domains controls the onset of lipid mixing but not the subsequent transition from hemifusion to full fusion. Moreover, we find that a partially zipped nonfusogenic trans-complex is rescued by Sec17, a universal SNARE cochaperone. Rescue occurs independently of the Sec17-binding partner Sec18, and it exhibits steep cooperativity, indicating that Sec17 engages multiple stalled trans-complexes to drive fusion. These experiments delineate distinct functions within the trans-complex, provide a straightforward method to trap and study prefusion complexes on native membranes, and reveal that Sec17 can rescue a stalled, partially zipped trans-complex.


Assuntos
Membrana Celular/fisiologia , Organelas/fisiologia , Proteínas SNARE/fisiologia , Saccharomyces cerevisiae/fisiologia , Cálcio/farmacologia , Fusão Celular , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Cinética , Lipídeos/fisiologia , Fusão de Membrana/fisiologia , Modelos Biológicos , Proteolipídeos/fisiologia , Vacúolos/fisiologia
6.
RNA ; 13(12): 2252-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17925343

RESUMO

The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have analyzed the causes of growth defects resulting from mutations in the Saccharomyces cerevisiae U6 ISL-bulged nucleotide U80 and the adjacent C67-A79 base pair. Intragenic suppressors and enhancers of the cold-sensitive A79G mutation, which replaces the C-A pair with a C-G pair, suggest that it stabilizes the ISL, inhibits U4/U6 assembly, and may also disrupt spliceosome activation. The lethality of mutations C67A and C67G results from disruption of base-pairing potential between U4 and U6, as these mutations are fully suppressed by compensatory mutations in U4 RNA. Strikingly, suppressor analysis shows that the lethality of the U80G mutation is due not only to formation of a stable base pair with C67, as previously proposed, but also another defect. A U6-U80G strain in which mispairing with position 67 is prevented grows poorly and assembles aberrant spliceosomes that retain U1 snRNP and fail to fully unwind the U4/U6 complex at elevated temperatures. Our data suggest that the U6 ISL bulge is important for coupling U1 snRNP release with U4/U6 unwinding during spliceosome activation.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Pareamento de Bases , Sequência de Bases , Sequência Conservada , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Fenótipo , RNA Fúngico/química , RNA Fúngico/genética , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...